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Abstract
Multifractal formalism in the microcanonical framework has proved to be
a valuable approach to understand and analyze complex signals, typically
associated with natural phenomena in scale invariant systems. In this paper, we
discuss the multifractal microcanonical formalism in a comprehensive, unified
way, including new theoretical proofs and validation tests on real signals, so
completing some known gaps in the foundations of this theory. We also review
the latest advances and describe the present perspectives in this field. Some
technical details on the implementation of involved algorithms and relevant
open issues are also discussed.

PACS numbers: 47.53.+n, 89.75.Da, 47.11.+j

1. Introduction

Systems displaying scale invariant behavior have been frequently reported in the physics
literature since the early days of statistical mechanics [1]. The prototype of a scale-invariant
phenomenon is a phase transition [2–4]. In a first-order phase transition there is an abrupt
change in one or more properties of a physical system; in higher order transitions, different
thermodynamic observables as well as some time and spatial correlation functions display
power-law behavior. The phenomenon can be considered as a fingerprint of scale invariance.
A proper, full characterization of a critical point requires the determination of the scaling
exponent: it was soon realized that systems characterized by the same values of the singularity
exponents formed a particular universality class: close to the critical point, the details on
the microscopical dynamics of the system become irrelevant and the macroscopic features
of the class are precisely determined by the exponents [2]. Thus, it makes sense to classify
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physical systems according to the values of the set of critical exponents since it is a manner
to gain insight on the behavior of complex systems from their simplest representatives in the
respective universality class.

Fractal sets are reasonable candidates for the realization of critical manifolds (extending
the concept of critical points) in dynamical systems since attractor sets are, in many cases,
fractal. Fractal sets have an intrinsic scale invariant nature due to their origin which can
be expressed by a characteristic exponent that is the fractal dimension of the set. For a
homogeneous fractal F, with fractal dimension DF , many relevant scale-dependent quantities
(e.g., spatial correlation between points in F, probability of intercepting F with balls of radius
r, etc) decay as a power law of the scale r with exponents which are directly related to the
fractal dimension DF [5]. The widespread occurrence of this behavior led researchers to
interpret those systems in terms of fractal sets, and try to characterize universality classes in
terms of possible underlying fractal attractors or fractal interfaces [2].

Nevertheless, a better understanding of the mechanisms that govern the evolution of some
dynamical systems, turbulent flows being one of the most relevant cases, evidences that the
observed intrinsic complexity could not be covered by a simple description based on the
existence of a single fractal interface. As a consequence, a richer framework was required
and the natural step forward was to consider multiple-fractal hierarchies which could fit better
with the available evidence. Bi-fractal, first, and soon multifractal characterizations of such
systems were applied to fit experimental data. In a celebrated paper, Parisi and Frisch [6] put
into evidence the connection between an underlying multifractal hierarchy and the spectrum
of exponents observed in the structure functions obtained from a turbulent flow in the regime
of fully developed turbulence (FDT). Hence, the different fractal components in a multifractal
system are conveniently arranged to give as a result the observed scaling exponents [7]. The
interest on multifractals considerably grew, giving rise to many papers devoted to assess
the presence of a multifractal hierarchy in physical systems, and then to exploit this fact to
characterize them from a statistical point of view ([8] and the references herein).

The standard approach studies multifractal using global statistical descriptors applied to
the system under study. Thus, the hierarchy of scaling exponents is derived by the analysis
of averaged statistical observables (e.g., structure functions, which are identified with the
moments of order p of an intensive variable that depends on a scale scope r). In order to
evaluate the observables, the system is required to have stationary averages (i.e., the average
over a single realization large enough is close to the average over different realizations). In
FDT, stationarity of the moments is necessary to obtain structure functions and this can be
done by averaging over different spatial locations of the same flow realization. In such an
instance, we speak about the canonical multifractal framework: we do not identify individual
states (the fractal components), but the ‘thermalized averages’ (that is, averages over the fractal
components) of some variables. The multifractal hierarchy is assessed indirectly, by observing
the scaling behavior of these averages. The canonical multifractal framework has been widely
employed since its introduction, and even nowadays it is the most common approach in the
experimental study of multifractal systems.

An alternative to the global approach is a microscopical, geometrical approach, in which
the different fractal components are isolated in each single realization of a physical system.
This is the basic goal of the microcanonical multifractal framework: to isolate and identify
the individual fractal microstates. Separating the fractal components is computationally much
harder than computing canonical averages, as it requires greater accuracy and the resolution of
some practical processing issues. Thanks to the application of the microcanonical multifractal
framework, new processing tools are now available, and only within this scenario the dynamics
of some multifractals systems can be properly understood.
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This paper intends to be a review of the basic concepts and tools for the application of the
microcanonical multifractal framework. We will explain in detail the theoretical foundations
of the formalism and how to apply these concepts in practical situations. In section 2, we set
up some conventions used throughout the paper. Section 3 gives a general introduction to the
canonical framework and also addresses its relation with multiplicative processes and energy
cascades. Microcanonical multifractality is introduced in section 4. We start by considering
multiaffine signals and then, we introduce the general notion of multifractal measure as well
as the fundamental concept of multifractal decomposition. These ideas are illustrated through
some examples. In section 5, the connection with the energy cascade is developed to justify
the accurate reconstruction of a turbulent signal from its most singular component (MSC).
The theoretical setting and the algorithms are presented in depth as they help to understand the
concept of reduced signal which is of fundamental importance for the study of geophysical
flows and turbulent signals (the reduced signal is presented in the second part of this paper).
Finally, our conclusions are outlined in section 6.

2. Settings and conventions: data

2.1. Settings and conventions

The notation o(rα) means a quantity which becomes negligible in comparison with rα as r
goes to zero, namely

lim
r→0

o(rα)

rα
= 0. (1)

Throughout the paper, we will denote a signal by s(x), where x stands for the position
vector in a d-dimensional real space R

d . In general, signals will only be defined over a
compact domain � ⊂ R

d . The symbol * denotes the convolution product that will be
extended to the convolution dot product for vector-valued functions; namely, if v(x) = (vi(x))

and u(x) = (ui(x))(1 � i � d) are two vector-valued functions, their convolution dot product
(v ∗ u)(x) is given by

(v ∗ u)(x) = Tr((vi ∗ uj )(x)) =
d∑

i=1

(vi ∗ ui)(x). (2)

The Fourier transform of a function s(x) will be denoted by ŝ(f), where f is defined in the
frequency space. The power spectrum of the signal, S(f), is defined as

S(f) = 〈|ŝ|2(f)〉 (3)

where the average 〈·〉 is taken over the ensemble of signals s under study. With this definition,
the power spectrum is the Fourier transform of the averaged autocorrelation of the signal s,
which coincides with the two-point correlation of the ensemble of signals when the ensemble
is statistically translationally invariant [9–11]. The power spectrum is a quantity that has been
widely used to make the link between geometry and statistics, and to determine if a system
possess statistical scale invariance. Many signals are observed to possess a power spectra
scaling as

S(f) ≈ A0 f−(2−η) (4)

where the deviation exponent η can take a broad range of values. Thus, for FDT η = 1/3 (the
famous 5/3 law, [12]), while for natural images η takes a small value which depends on the
particular ensemble under analysis [13–15]. The reference value −2 in the exponent implies
a high-degree of non-stationarity in the signal, typical of piecewise continuous functions [16].
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Such non-stationarity is present in signals of very different nature such as natural images
[13, 14], econometric time series [15, 17], DNA sequences [18] and geophysical signals
of different types [16]. For all those signals, a good strategy to recover stationarity is to
define a signal s ′ obtained by taking derivatives or increments on s. Note that differentiating
a signal is read in the Fourier space as multiplying it by if. According to the definition
of the power spectrum, equation (3), the power spectrum S ′(f) associated with s ′ is then
S ′(f) = f 2S(f),≈A0 for η = 0, so it is constant. Constant spectra mean total spatial
decorrelation and, hence, the signal is stationary. Not surprisingly, one of the first strategies
to analyze the local behavior of a signal is to take increments around any point under study.

Another concept which will be relevant in the course of this paper concerns the wavelet
transform of the signal [19, 20]. Given a wavelet �(x), we define the wavelet projection (or
wavelet transform) of a signal s at the point x and the scale r, denoted by T�s(x, r), as

T�s(x, r) = 1

rd

∫
s(y) �

(
x − y

r

)
dy = s ∗ �r(x) (5)

where �r(x) = 1

rd
�

(x
r

)
. We want to point out here that when wavelet projections are used

for signal analysis, it is not required, in general, that � verifies the admissibility condition∫ |�̂|2(f)
|f1| · · · |fd | df < ∞, (6)

which is only necessary to recover the function s from the values of its wavelet projections
[19]. As a matter of fact, our interest in wavelets concerns their capability of producing
smooth interpolations among scales as well as of localizing characteristic structures at any
scale. In addition, they are useful to filter noise and long-range correlations. In this paper, we
will consider two families of wavelets: Gaussian and Lorentzian. The basic Gaussian wavelet
G(x), is given by

G(x) = exp
(− 1

2‖x‖2
)
. (7)

The β-Lorentzian wavelet Lβ(x) is given by

Lβ(x) = 1

(1 + ‖x‖2)β
. (8)

Note that both types of wavelets are isotropic, that is, they do not privilege any particular
direction. The functions G and Lβ are positive so that they are not admissible wavelets.
However, for some of the tests we will need to use the derivative of positive functions as
analysis wavelets. For those cases, we have used the nth-order isotropic derivatives of the
Gaussian and β-Lorentzians. We define the nth-order isotropic derivative of a function F(x)

as the function Fn(x) which verifies

F̂ n(f) = ‖f‖n F̂ (f). (9)

To keep notation simple, we will denote the nth-order isotropic derivative of G and Lβ by Gn

and Ln
β , respectively, and they will be referred to as the nth-order Gaussian and the nth-order

β-Lorentzian.

2.2. Data

For illustration purposes, we have considered throughout the paper two different signals which
exhibit multifractal properties.

The first one is a 2D-domain signal: a satellite image, acquired by the MeteoSat satellite
in the thermal infrared spectral range, in an area over Western Equatorial Africa. This type of
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Figure 1. Left: MeteoSat thermal infrared image, acquired at 00:00 GMT on 31 July 1998. The
area shown goes from 0 to 40◦ east, and from 0 to 20◦ north. Right: Series of the logarithm of
the daily quotation prices (in euros) for TelefónicaTM stock between 1990 and 2000; the x axis is
given in market days since 1 January 1990.

images is used to assess the temperature of the higher layers of the atmosphere. The atmosphere
can be seen as a stratified flow, except at locations and scales where convection predominates
[21] and, in both cases, FDT is present, either in the form of 2D or 3D turbulence. As a
consequence, temperature should have a multifractal structure, consequence of the advective
forcing of the turbulent flow [12]. Meteosat infrared images, as that shown in figure 1, left,
have been checked to possess multifractal structure [21, 22].

The second signal has 1D domain: it stands for the daily quotation price of a highly
capitalized Spanish stock market asset, TelefónicaTM, for a period of about 10 years. It is
well known that the absolute value of returns (i.e., relative variations of the price over a
given period) of stock market prices are power-law correlated in time [15, 17], what has
been interpreted as an evidence of the scale-invariant character of the stock market evolution.
Such an evolution would be an emergent property in a complex system consisting of a large
ensemble of interacting agents with different information, capital and strategies. This type of
signals has also been reported as multifractal [23–25]. This 1D signal is shown in figure 1,
right.

3. Canonical approach to multifractality

3.1. General considerations

In this section, we present some basic theoretical aspects about the canonical framework, to
make clearer its connection and differences with the microcanonical approach. We do not
pretend, however, to perform an exhaustive review on this subject since it has been thoroughly
discussed in the scientific literature [8, 26]. From a technical point of view let us mention
[27–30] as references about the theoretical limitations of the formalism and ways to overcome
them, and [26, 31–34] about practical implementations. Besides, we do not present any test
on the applicability of the canonical formalism to real data. Rather, we directly refer to many
studies reporting multifractality in a canonical way in different contexts such as econophysics
[23, 35], natural images [36, 37], different geophysical signals [16] and even heart-beat
dynamics [38, 39], to cite some examples, although the most studied physical system is FDT
(let us cite [40] as a possible consensus reference). In fact, the first theoretical explanation
aimed at supporting the empirical observation of multifractality in a canonical way in FDT
was given by Kolmogorov in one of his famous 1941 papers [41].
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In a canonical approach, multifractality is observed when the probability distribution of
some particular scale-dependent intensive variables follow a power-law behavior. In a more
formal way, for a given signal s(x) there exists at least one scale-dependent local functional Tr

which defines the function Tr s(x) with the desired properties. The function Tr s(x) depends
on the basis point x and the scale parameter r where r determines the degree of locality of the
functional Tr . Typical examples of Tr are wavelet transforms at scale r or some differential
operators applied to the signal. The valid shape of the functional must be checked in each
context. To be more precise, we will say that a signal is (canonically) multifractal if, for a
given family of functionals Tr , we have locally when r → 0:

〈|Trs|p〉 = αp rτp + o(rτp ) (10)

where the average 〈·〉 is taken over the ensemble of signals s belongs to (the coefficient αp

depends on the functional Tr ). In practice, such an ensemble average is not accessible and
what is actually computed is an average over different points x in the same realization s. In the
literature on turbulence it is usual to call each of the quantities 〈|Trs|p〉 the order p structure
function and the functional Tr s usually stands for the difference of velocities between two
points a distance r apart or the local dissipation of energy on a ball of radius r.

3.2. Multiplicative processes

Kolmogorov had the intuition that in FDT energy is transmitted from the large-scale structures
(eddies) to the smaller ones by a simple mechanical transfer process, and therefore, when the
fluid attains a state of ‘dynamical equilibrium’ we should expect a balance in the amount of
energy stored in each scale. Kolmogorov proposed the following: given two scales r and
l, 0 < r < l, one can characterize their distributions by means of an injection parameter ηr/l

such that

|Tr s| .= ηr/l |Tls| (11)

where the symbol ‘
.=’ means that both sides are equally distributed. Note that we do not

claim that |Tr s(x)| = ηr/l |Tls(x)| for all x, which would be a very strong requirement and
could only be verified for a very particular, well-chosen class of functionals, depending on the
signal [42, 43]. Kolmogorov stated that the injection ηr/l only depends on the ratio of scales,
ηr/l = (r/ l)δ . Taking moments at both sides of equation (11) and then averaging, we obtain

〈|Trs|p〉 =
( r

l

)δp

〈|Tls|p〉 = Ap rδp (12)

where Ap = 〈|Tls|p〉〉l−δp. From equation (10) it follows that τp = δp, that is, the canonical
exponents τp depend linearly on p. It has been verified [12] that an injection mechanism as
the one proposed by Kolmogorov leads to a geometrical arrangement of contributing points
which has non-trivial fractal dimension D, which can be deduced from the injection exponent
δ. The precise relation between D and δ depends on the particular functional used and, for
instance, for the local energy dissipation one gets δ = D − d < 0 [12].

A linear scaling in the canonic exponents τp is referred to as ‘normal scaling’ and the
system is monofractal. However, experiments in FDT show that the scaling is not linear with
p; rather, it is a convex curve. Such a behavior is referred to as ‘anomalous scaling’ and the
associated systems are usually called multifractal. As a matter of fact, anomalous scalings
are the most frequent cases. Any curve τp can be approximated by linear segments, each
one representing a different fractal component. Thus, to obtain the smooth, nonlinear curves
τp coming from experiments, it would be necessary to have an infinite collection of fractals,
forming the so-called multifractal hierarchy. All these intuitive ideas can be formalized in a
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more precise way, but we prefer to defer this specific discussion to section 4.1, in which the
link between the geometrical arrangement of fractal components and the canonical exponents
τp will be made explicit.

It is obvious that the assumption of considering ηr/l as a constant injection parameter
fails for those cases in which anomalous scaling is observed. However, equation (11) can
be generalized to account for anomalous scalings provided ηr/l is a random variable, it
only depends on the ratio r/ l and it is independent of Tls. We proceed as follows: let us
suppose that we have defined a variable Tr s for which multifractality in a canonical sense,
equation (10), is observed. Thus, given two scales r and l (we drop the correction terms to
alleviate notation) we obtain

〈|Trs|p〉
〈|Tls|p〉 =

( r

l

)τp

. (13)

Let us now suppose that for any 0 < k < 1 there exists a random variable ηk such that〈
η

p

k

〉 = kτp . Two conditions must be verified to construct ηk . First, the expressions kτp must be
valid p-moments of a positive variable. This implies that the curve τp versus p must be convex,
due to Jensen’s inequality [44] applied to the moments. Note that if τp are canonical exponents
obtained from equation (10) they necessarily form a convex curve. The second requirement is
that the moments

〈
η

p

k

〉
must contain enough information to retrieve the probability distribution

[45]. This is the moment problem, studied since Carleman [46]: there is a unique solution
provided τp does not diverge too fast with p. Once the variable ηk is constructed, we have

〈|Trs|p〉 = 〈
η

p

r/l

〉〈|Tls|p〉. (14)

If the structure functions 〈|Trs|p〉 and 〈|Tls|p〉 do not diverge too fast with p, we can
apply the equation given above to reconstruct the distributions of the variables Tr s and Tls.
We obtain as a consequence equation (11), but now ηr/l is a random variable, independent of
|Tls|. If we can define the variable ηk for any k, then for any k, k′ we have

ηk ηk′
.= ηkk′ (15)

what in terms of the variables Tr s gives rise to the known ‘energy cascade’: for any scales
r < l we have that the energy transfer from the scale l to the scale r can be either verified
directly or passing through any intermediate scale r ′. As we can decompose the process in
any number of intermediate stages, it follows that the distribution for the variables ηk must be
infinitely divisible [47] with respect to the parameter k, that is, equation (15) is verified. The
class of infinitely divisible processes is quite broad and includes particular processes which
are discrete in scale [48] although we will be interested, in general, in processes which are
continuous in scale [49, 50], as they can be considered as more physically sound.

The existence of the cascade implies that the process relating the variables Tr s at different
scales can be hierarchically organized: the energy enters the system at the greater scales, then
it propagates down the cascade up to smallest scales, where it is dissipated. The existence of
an energy cascade has been always considered as an important feature of turbulent systems, as
it shows that the coherent, large-scale modes of motion are progressively degraded to shorter-
ranged movements which eventually degrade to heat, which is a manifestation of disordered
(molecular) motion. The hierarchy is established taking into account that the leading motion
modes (those at the larger scales) organize all the fluid, because from them we can deduce (at
least, statistically) how all the other modes are organized. We will see in section 5 that the
existence of the cascade can be interpreted in explicit geometric terms in the microcanonical
formulation.
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4. Microcanonical approach to multifractality

4.1. Generalities

Multifractality in a microcanonical sense is observed if there exists local power-law scaling
behavior for each point in the signal domain. Given a signal s(x), it is processed by a scale-
dependent local functional Tr to obtain the function Tr s(x), that depends on the basis point x
and the scale parameter r and that determines the degree of locality of the functional Tr . We
will say that a signal is multifractal in a microcanonical sense if, for at least one functional Tr ,
the following relation holds for any point x on a dense set of R

d :4

Tr s(x) = α(x) rh(x) + o(rh(x))(r → 0) (16)

for some functions α(x) and h(x). Although the multiplicative term α(x) depends on the
particular functional Tr chosen, the exponent h(x) should be independent of it. Note that
for small scales r (such that the o(rh(x)) term becomes negligible) all the dependence on the
scale parameter is concentrated in the factor rh(x), and thus the knowledge of the exponent
h(x) allows us to interpret the degree of regularity of the function at x. For that reason, it
is a common convention to call these exponents ‘singularity exponents’ of the multifractal.
By classifying all the points sharing the same singularity exponent, we obtain the so-called
transition fronts or singularity components of the system. We denote by Fh the singularity
component associated with the singularity value h, and it is defined as follows:

Fh = {x : h(x) = h}. (17)

A geometrical arrangement of the points satisfying equation (16) not only has been
experimentally observed in very different signals [22, 43, 51, 52] (see also subsection 4.2.1), in
some instances it can also be theoretically predicted using a simple, purely geometric argument.
From a classical theorem in the theory of weakly differentiable functions ([20], theorem
2.7) the total variation of s, whenever finite, is the integral of the 1-dimensional Hausdorff
measure of the level-sets of s. Consequently, a power-law behavior of the type described
by equation (16) should be expected for those points which contribute to the divergence of
the total variation integral. As we will see in section 4.2.2, the basic functional used in the
microcanonical multifractal formalism is the integral of the signal gradient (maybe understood
in a distributional sense), what confirms the relevance of this geometric argument.

It is important to remark that to properly talk about a multifractal signal, we cannot
only require equation (16) to hold. We should also require the singularity components to be
hierarchically arranged as a network of sets with different fractal dimensions. Let us suppose
that the singularity component Fh has fractal dimension D(h). The function D(h) is known
as the singularity spectrum of the multifractal. According to Parisi and Frisch’s derivation [6],
the canonical exponents τp, associated with the structure functions of order p, are related to
the singularity spectrum D(h) through

τp = infh{ph + d − D(h)} (18)

where, as before, d is the dimension of the embedding space. Thus, the step from fractal
geometry of the system to its global statistical properties is mediated by the singularity
components since equation (18) shows that the canonical exponents are given by the Legendre
transform of the singularity spectrum. By construction, the Legendre transform of a function
is convex. Conversely, if D(h) is also convex, the singularity spectrum can be retrieved from
the canonical exponents by applying again a Legendre transform

D(h) = infp{ph + d − τp}. (19)

4 For the remaining of this paper, any functional equality should be understood to hold on a dense set of R
d .
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This estimate of the singularity spectrum is known as the Legendre spectrum. Many methods
based on the multifractal canonical formalism rely on equation (19) to evaluate the singularity
spectrum from the indirect evidence furnished by the canonical exponents τp. A technical
detail should be exposed here: the Legendre spectrum may differ from the actual singularity
spectrum since in the canonical formalism there is no way to know if the spectrum given by
equation (19) is the actual one or just its convex hull. This knowledge is only granted in
a microcanonical formulation. In fact, when the microcanonical formalism can be applied,
there is a simple way to compute the singularity spectrum. Let us suppose that we evaluate the
singularities at a resolution scale r0 which is small enough. The distribution of singularities at
this scale, ρr0(h), must verify [5]

ρr0(h) = A0r
d−D(h)
0 + o

(
r

d−D(h)
0

)
(20)

which means that the singularity spectrum can be retrieved from the empirical histogram of
singularity exponents. One can even go beyond if one further assumes, to simplify the analysis,
that there exists a singularity component Fh1 of maximum dimensionality, D(h1) = d. This is
not a strong hypothesis in general: if the functional Tr s has total support at any finite size r, and
the signal is not strictly monofractal, such a component must exist [53] (monofractal systems
can also be considered with some specific adaptations [54]). Applying such assumption to
equation (20), we obtain a good estimate of the singularity spectrum by means of the following
formula:

D(h) = d − log
(
ρr0(h)

/
ρM

r0

)
log r0

(21)

where ρM
r0

= maxh{ρr0(h)}. Equation (21) is commonly referred to as the ‘histogram method’
for the evaluation of the singularity spectrum [5, 55, 56].

Due to the limitations of the canonical multifractal formalism, it has been commonly
accepted that a system can only be considered as multifractal if the singularity spectrum
is convex (and hence, it can be retrieved by means of the Legendre estimate). One of the
advantages of the microcanonical multifractal formalism is that it allows us to extend the
concept to situations in which the spectrum has more than one maximum. However, for
the scope of this paper, and taking into account that this is the most common experimental
situation, we will restrict ourselves to the cases of convex singularity spectra. This leads to
the following definitions.

Definition (microcanonical multifractal formalism). A multifractal d-dimensional scalar (real
or complex) signal s(x) verifies the following points:

(i) there exists at least a family of functionals {Tr}r such that equation (16) holds for any
point x ∈ �;

(ii) at any scale r0, equation (20) holds for the same curve D(h);
(iii) the singularity spectrum D(h) derived from equation (20) is a convex function of h.

The experimental validation of microcanonical multifractality on a signal will thus proceed
in three steps, according to the three points given above. First, equation (16) should be verified
with a good accuracy for a large enough range of scales r and for the majority of the points in
the signal domain. Second, applying equation (21) at different resolution scales r0 we should
obtain the same curve D(h), so validating the scale invariant character. Finally, D(h) must be
convex. To carry out this task there are two different conceptual strategies that we will discuss
in the next subsections.

9
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4.2. Processing the signal: multiaffine functions and multifractal measures

There is no canonical way to know a priori for which functional Tr a signal s will be
evidenced as multifractal, so the only way is to test some usual definitions. There are two
basic functionals which have demonstrated to be useful to this goal. This leads to two ways
to deal with multifractal signals in the microcanonical framework, either to analyze them
as multiaffine functions or through appropriate multifractal measures. In this subsection we
analyze both in detail.

4.2.1. Multiaffine functions. In the context of microcanical multifractality, a signal is said
multiaffine [8, 12, 27] if, locally around any point x ∈ �:

|s(x + r) − s(x)| = αl(x) ‖r‖γ (x) + o(‖r‖γ (x))(r → 0) (22)

Multiaffine functions possess local Hölder exponents γ (x) at each point x characterizing the
local degree of regularity (or singularity) of the function at that point [19, 57, 58]. We are
assuming here that for almost any possible direction r/‖r‖ the obtained Hölder exponent is
the same (note that in equation (22) r stands for a position vector, and the corresponding scale
is given by ‖r‖); note that in general γ will also depend on the direction r/‖r‖.

There are some considerations affecting multiaffine signals that must be taken into account.
The range of values that the singularity exponents γ (x) can take is always bounded by below
for real physical signals. Real signals cannot diverge to infinity at any point, because this
would imply an infinite energy (or matter) expense or supply. Thus, real signals are bounded
on compacts subsets in R

d and hence, for any point x there exists an upper bound A0 such
that |s(y)| < A0 ∀ y ∈ Ux for a certain open neighborhood Ux of x. These bounds rely
on general physical principles independently of the resolution level at which the signal is
described (namely, the number of sampling points). For instance, the temperature of sea water
is always below 100◦ C (of course, even lower), and no point can attain higher temperatures
on the Earth. The existence of bounds on the signal implies that the singularities are bounded
by below, because |s(x + r) − s(x)| < 2A0 and hence γ (x) � 0 at any point x. So, we should
expect that the singularity exponents obtained from the analysis of real signals are always
above 0. This is in conflict with some models used to describe certain physical phenomena in
which unbounded singularities can be allowed in a realization of the signal (e.g. multiplicative
cascades of log-Normal or log-Levy stochastic processes) [49, 50, 59].

In practice, few physical signals are multiaffine due to the presence of some extra
contributions whose nature is beyond the multifractal paradigm. These extra contributions
appear superimposed to the ideal, multifractal signal, and account for long-range correlations
[8]. Typically those long-range correlations are differentiable functions L(x) with integer
Hölder exponents HC(x). In fact, except for extrema (which have zero derivative) we can
consider that HC(x) = 1 from the mean-value theorem for differentiable functions. The
problem with multiaffine functions arises when the exponent HC is smaller than some of the
exponents associated with the smoothest components in the multifractal hierarchy because, in
this case, the dominant contribution comes from the correlation term and part of the multifractal
hierarchy is lost. Long-range masking effects of this type include sun glint, solar heating,
wind effect on the sea, etc in satellite images and long-range tendencies in time series to cite
some examples.

As a consequence, a natural question concerns the design of mechanisms to get rid of those
terms masking the pure multifractal structure of a multiaffine signal. It has been commonly
accepted that long-range correlations appear as an additive contribution [8, 26]. In such a
case, a possible way to filter this type of contribution is to wavelet-transform the signal by
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Figure 2. The theoretical continuous curve can only be approximated over a discretized grid
(dashed steps) up to a resolution which allows separating positive and negative parts; the zero-
crossings then correspond to pixel boundaries. For that reason, the number of zero-crossings
determines the minimum attainable resolution.

applying an appropriate wavelet � capable of canceling polynomials up to an order n greater
than the maximum expected h in the multifractal. For a multiaffine signal s(x), equation (22),
it follows [19, 8] that any admissible wavelet � verifies5

T�s(x, r) = α�(x) rγ (x) + O(rγ (x)). (23)

On the other hand, when the long-range correlation term L(x) can be expanded in a Taylor
expansion around the point x, then for any wavelet � which vanishes any polynomial in the
components x1, . . . , xd of the position vector x up to the order n − 1, it follows that

T�L(x, r) = l�(x) rn + o(rn). (24)

Hence, when the measured signal sM(x) consists of the sum of a multiaffine part and of
a long-range correlation term sM(x) = s(x) + L(x), we can recover the correct singularity
exponents γ (x) up to the order n, for a wavelet vanishing polynomials up to the order n − 1,
because

T�sM(x, r) = α�(x) rγ (x) + o(rγ (x)) (25)

for all γ (x) < n. A usual choice for n is n = 2, probably due to the fact that the typical
value for HC is 1. Note, however, that there are reasons to limit the maximum filtered
polynomial order. A wavelet capable of filtering higher and higher order polynomials can
be generated by successive differentiation of a basis wavelet. However, as the differentiation
order increases, the number of zero-crossings in the wavelet also grows up, what limits the
minimum resolution that the wavelet can attain; see figure 2. As a consequence, the spatial
localization of the singularities is worse as the order n of filtered polynomials is increased.
Because of this effect, a compromise must be reached.

Contamination of a multiaffine signal by smooth long-range correlations is not the only
problem that may appear. Some more complicated situations may happen, and the one which
has been studied in greatest depth is the apparition of oscillating singularities [60, 61]. For

5 Note that in the most frequent formulations multiaffine functions are analyzed with directional wavelets or even
with wavelet distributions which have only support over a given direction. However, there is no reason to impose this
restriction in general.
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those cases, it was proposed to extract the scale-space skeleton of maxima lines for the wavelet
transform, that is, those lines in the (x, r) space for which |T�s(x, r)| were local maxima for
fixed r. It was conjectured by Mallat [62] that the maxima lines could contain enough
information to fully reconstruct the whole signal. Methods such as WTMM [8, 26, 29] take
advantage of these ideas. Note however, that these techniques are applied in the canonical
framework but cannot be implemented according to the microcanonical formalism because,
by definition, the singularity exponents are computed at the maxima lines only, which are
required to be isolated points at each fixed value of r [26] (although some attempts to extend
WTMM to obtain an estimate of h(x) at any point x have been done [58]). In addition,
WTMM requirement of having isolated singularities poses many problems when the signal
under analysis is formed by singularity components which are dense sets [53].

4.2.2. Multifractal measures. Another important concept in the multifractal microcanonical
formalism concerns the definition and construction of multifractal measures. They are
designed to reveal the existence of power-law correlations in signals s which are not simply
directional (as with multiaffine functions) but which extend over a whole region and to
characterize the regularity of the function at a given point. However, instead of taking
variable-scale increments centered on the studied point (which are more affected by error in
real, experimental situations), one integrates all the variations of the function around that point
at different scales. This integration allows us to remove some fluctuations and to obtain a
better idea on the behavior of the function when real data are processed. For a given signal s
which has an underlying multifractal structure, a reasonable guess for a multifractal measure
µD is the following:

dµD = Ds dx (26)

(i.e. a measure having density Ds w.r.t. to the Lebesgue measure dx) where D is an appropriate
differential operator, to be determined. We will discuss on the properties of D a bit later; so far,
let us say that obviously the operator should be such that Ds is a locally integrable function.
By construction, µD is absolutely continuous with respect to the Lebesgue measure.

A measure µD as the one defined above is a multifractal measure if for any point x ∈ �

one has:

µD(Br(x)) = αD(x)rh(x)+d + o(rh(x)+d) (27)

where Br(x) stands for the ball of radius r centered at x. The shift d (space dimension) is
introduced to remove the contribution due to the integral, hence capturing the behavior specific
to the function Ds.

There is no known way to define the operator D in order to generate a multifractal measure
for a signal which is known to have intrinsic multifractal structure. However, some general
principles are very helpful to find an appropriate form for it. For instance, many signals
are known to possess strong spatial correlations, manifested as a f −2 scaling in the power
spectrum. If D is the identity operator, the integral in equation (27) would be dominated by
the mean value of s on the ball Br(x), which is far from zero due to the lack of stationarity. As
discussed in section 2, the derivative renders the function stationary, and hence the measure of
a ball will reflect the actual singular structure around the point. This idea suggests to define a
vector-valued measure with the choice D = ∇, which has the advantage of leading to a linear
increment as those used in the definition of multiaffine functions when d = 1 (as gradients are
approximated on real data by finite increments). However, other reasons such that numerical
stability make preferable to define the operator as Ds = ‖∇s‖. It has been successfully used
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in [21, 22, 25, 36, 51, 52] and will be our choice in this paper; the associated measure µ is
given by

µ(A) = µ‖∇‖(A) =
∫

A

‖∇s‖(x) dx (28)

for any measurable set A. Note that for locally integrable ∇s the measure µ is the absolute
variation of µ∇ , that is, ‖µ∇‖ = µ. It follows that the scaling exponents obtained for µ∇ are
the same as those of µ.

It is interesting to note that this property allows us to relate multiaffine functions to
multifractal measures. Let us assume that s is multiaffine, in the sense that for any admissible
wavelet � equation (23) holds. For a particular wavelet � which is the gradient of another
function, � = ∇
, we obtain

T�s(x, r) = s ∗ �r(x) = s ∗ (∇
)r(x) = s ∗ (r∇
r)(x)

= r∇s ∗ 
r = rT
∇s(x, r). (29)

Applying equation (23) to the expression above it follows that

T
∇s(x, r) = α∇(x) rh(x) + o(rh(x)) (30)

where h(x) = γ (x) − 1. It suffices now to define 
 as the set function associated with the
unit radius, 
 = 1B1(0) to find

µ∇ (Br(x)) = rd T
∇s(x, r) = α∇(x) rh(x)+d + o(rh(x)+d). (31)

We conclude that if s is a multiaffine function, then the associated measure µ is a multifractal
measure. In addition, the singularity exponent of the measure at any point x, h(x), is simply
related to the multiaffine exponent γ (x) at the same point: they differ by a −1 shift, a property
that had been reported before [51, 63].

As for multiaffine functions, multifractal measures can be wavelet transformed in order
to filter additive long-range correlations which could affect the evaluation of high-order
singularities. However, taking into account the differential character of the measure density
this type of filtering is generally unnecessary. Let us concentrate in our choice D = ‖∇‖,
and, as before, let us suppose that the measured signal sM can be represented as the sum
of a multiaffine part s and the long-range correlation term L. As we have just shown, the
multiaffine part will lead to a multifractal measure in which the exponents will be shifted
by −1 with respect to those of the multiaffine function. On the other hand, the regular part
will define a measure with density ∇L, which will also be differentiable and only affects
the exponents h(x) > 1. Hence, the range of singularities which are not affected by the
presence of the long-range correlation has been expanded by 1. In many practical situations
this is sufficient, as the singularities which could be affected are of so high order that they are
anyway almost impossible to evaluate. But there is a different reason supporting the use of
wavelet transforms of a multifractal measure (rather, with the wavelet transform of the density
Ds): the necessity of providing good interpolation schemes for discretized signals in order to
evaluate the singularity exponents.

A final comment concerning wavelets. The wavelet � must verify some requirements, as
the behavior of its tail at infinity may alter the values of the singularity exponents. When the
position variable x goes to infinity, the wavelet must decay faster than ‖x‖−hm−d where hm is
the maximum value that the singularities h(x) can take. The proof is given in the appendix.
This requirement can also be formulated in the opposite way: if the wavelet behaves like
�(x) ∼ ‖x‖−n0 when ‖x‖ → ∞; hence,

T�‖∇s‖(x, r) = α�(x) rh�(x) + o(rh�(x)) (32)
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where

h�(x) =
{

h(x), h(x) < n0 − d

n0 − d, h(x) � n0 − d.
(33)

These results make reasonable to use a wavelet that decreases faster than any power law.
However, there is a trade-off between decrease speed and spatial localization of singularities:
wavelets with very steep decrease should be defined over minimum scales extending several
discretization units in order to provide a good enough interpolation but, consequently, the
uncertainty in the spatial localization is greater as this is function of a minimum scale. In the
next subsection, we will illustrate this issue with some examples.

4.3. Decomposing the signal: multifractal components

Since the microcanonical multifractal formalism allows us to determine the singularity
exponents of a signal at any point it is an excellent method to analyze some dynamical
properties of the physical system under study though the quality on the dynamical analysis
will be conditioned by the accuracy in the assessment of the different multifractal components
and the corresponding singularity exponents. One has to determine the value of h(x) with the
smallest possible error and also to minimize the spatial uncertainty about the actual position
of the evaluated exponent. In this scenario, it is crucial to pay attention to a very special
component, the so-called most singular component6 (MSC). The MSC plays a central role in
the description of multifractal physical systems. Geometrically speaking, it is the singularity
component associated with the smallest possible value h∞, finite for physical signals. We will
denote this set by F∞; F∞ = Fh∞ . In experimental situations [51, 64], the MSC must be
defined as a central value with a given quantization �h, namely

F∞ = {x | h(x) ∈ ]h∞ − �h, h∞ + �h[}. (34)

The MSC comprises the points where sharp, sudden local variations take place. For
illustrations purposes, let us mention that it is characterized by the presence of edges and
contours in the case of natural images [51, 64], periods with high volatility changes in the
case of econometric times series [25] or transitions in the case of physical signals [21, 52].
It is the component with the highest amount of information and among different outstanding
properties it allows us to reconstruct the whole signal. Details will be given in the next section.
The aforementioned reasons justify the search and development of techniques designed to
determine accurately the MSC. In this context, wavelet analysis is an excellent tool to carry
out the task. However, the design of appropriate wavelets, probably depending on specific
contexts of application, is still an open question. The design always implies a trade-off: as
the range of singularities it is able to resolve increases the quality of the spatial localization of
these singularities decreases.

4.4. Experimental application of the microcanonical framework

In this section, we want to illustrate the ideas presented so far. As benchmarks we will study
our example signals checking if the microcanonical multifractal formalism can be applied
with a reasonable accuracy, emphasizing all the steps required to perform the analysis.

4.4.1. Test on multiaffinity. The first check is to determine if the test signals can be considered
multiaffine functions in the most general formulation. This means that

6 Also called most singular manifold in the literature, although it need not to be a topological manifold.
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• equation (25) is satisfied taking into account the numerical limitations. This requires that
a large enough amount of points exhibit good correspondence with equation (25) for a
sufficiently large range of scales;

• the singularity spectra derived at each scale should fit, within the allowed numerical
accuracy, the same convex curve.

Concerning the first point, we propose a simple test on the validity of equation (25). It
consists in evaluating, for each point, the wavelet projections of the signal at different scales.
Then a log–log linear regression is performed in order to compute γ (x). We will consider
that equation (25) is satisfied if the regression coefficient of this fit is large enough for all but
a negligible amount of points. We have used as wavelets nth-order Gaussians and nth-order
β-Lorentzians for orders n ∈ {1, 2} and exponents β ∈ {0.5, 1, 1.5, 2}. The signals were
projected on various ranges of scales. The minimum value r1 is limited from below by the
wavelet resolution scale, r� , which depends on the wavelet � we intend to use (see discussion
in section 4.2.1). The maximum scale r2 is only limited by the size of the signal. We will
denote the ratio of scales κ, κ = r2/r1, as the ‘scale width’. Obviously, we can define a range
of scales by giving the minimum scale and the scale width. For our test, we have tried different
minimum scales (from 1 to 10 wavelet resolution scales) and several scale widths (from 2 to
50). A typical choice is r1 = r� and κ = 10, which is a compromise between taking a wide
enough range of scales and still have good spatial localization of the singularity values.

The results show that multiaffinity is a bad hypothesis for our test signals. For instance,
for the typical scale range (r1 = r�, κ = 10), less than 50% of the points had regressions
coefficient above 0.8 for the MeteoSat image. In the case of the TelefónicaTM series the
situation is even worse, having less than 25% of points with regression above 0.8. Similar
results were obtained for the other ranges. Hence, we consider that these two signals are not
multiaffine functions. We propose two reasons that could justify why the signals deviate
significantly from multiaffinity: on one hand, the directional dependence of the Hölder
exponent, that we neglected as a hypothesis; on the other hand, the numerical instabilities
associated with the use of very structured wavelets with several zero crosssings.

4.4.2. Test on multifractal measures. A completely different situation is presented when the
test signals are analyzed as multifractal measures. As before, the analysis proceeds in two
steps. First, we have to verify if equation (32) holds for all the points over several ranges
in scale, when an appropriate wavelet is employed. To perform the analysis we have first
used the Gaussian wavelet, as this wavelet does not impose any restriction on the observable
range of singularities (see the appendix). For the MeteoSat image, we obtain that more than
99% of the points had regression coefficient above 0.9 for any of the tested ranges (that is,
r1 ∈ [r�, 10r� ] and κ ∈ [2, 50]). In the case of the TelefónicaTM series, we obtain similar
results: 95% points had regression coefficient above 0.9 for all the scale ranges. In figure 3
we present the empirical distribution of values of h for both signals for r1 = r� and κ = 10.

The second part of the test consists in determining the singularity spectrum at different
scales and then verify that we get the same convex curve. To evaluate D(h), we have applied
equation (21), where the resolution scale r0 is estimated from the data resolution: r0 = 1/q for
series consisting of q equally spaced points while r0 = 1/

√
nxny for images having nx × ny

pixels. We changed the resolution of the data (or, equivalently, of the minimum scale in
the wavelet) in powers of 2. The results are summarized in figure 4. The correspondence
is very good, so we state that the second condition is also verified. We conclude that both
signals define multifractal measures and that we can apply in this way the microcanonical
framework.
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Figure 3. Empirical singularity distributions at resolution scale for Meteosat (left) and Telefónica
(right).

D (h)

h h

D (h)

Figure 4. Test on the multiscale and convex character of the singularity spectra estimated for
MeteoSat (left) and Telefónica (right). The curves correspond to original resolution (+), 2 times
reduced (×) and 4 times (∗) reduced.

4.4.3. Signal decomposition. Once the signals have been proved to possess multifractal
structure, it is interesting to explicitly perform the multifractal decomposition, in order to
study the different fractal components and relate them to the dynamical properties of the
system. In figure 5, we show a representation of the singularity exponents obtained with the
Gaussian wavelet.

We have also verified that Lorentzian wavelets give similar results, with good regression
exponents for the majority of points. Confirming the derivation given in the appendix and
according to equation (33), the estimated values of singularity exponents are truncated beyond
a value which depends on the tail of the wavelet. Hence, as β-Lorentzians decay as ‖x‖−2β

we find that the truncation exponents are hβ = 2β − d. Up to hβ the distribution of exponents
is in good correspondence with that obtained for the Gaussian wavelet for the equivalent
scale range, and hence we obtained the same estimates for the singularity spectrum over the
resolved range of singularities. In figures 6 and 7, we summarize the results for the MeteoSat
image, and similar results are obtained for Telefónica series. In the rest of this section, we
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h(x) h(t)

t

Figure 5. Left: Gray-level representation of the singularity exponents for a MeteoSat image
acquired in the thermal infrared range; the brightest is the point, the most singular (i.e., smallest)
is the value represented. Right: Series of singularity exponents for Telefónica series. For both
graphs the Gaussian wavelet was used.

h(x) h(x)

ρrΨ
(h) ρrΨ

(h)

h h

MSC MSC

Figure 6. From top to bottom: Gray-level representation of the singularity exponents, empirical
distribution of singularity exponents and estimated most singular component (h < −0.2). Left:
Results for L1. Right: Results for L1.5.
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Figure 7. From top to bottom: Gray-level representation of the singularity exponents, empirical
distribution of singularity exponents and estimated most singular component (h < −0.2). Left:
Results for L2. Right: Results for G.

will concentrate on the MeteoSat image because it is easier to illustrate geometrical concepts
using signals defined over a spatial domain.

Concerning multifractal components, we have already discussed how important is to
determine the MSC with high accuracy. In this study, the estimates for the MSC are calculated
using the range with the finest spatial accuracy (r1 = r�, κ = 2). The MSC is actually
evaluated as the set of points below a given threshold hθ , namely

F∞ = {x | h(x) < hθ } (35)

that for the distributions presented here corresponds almost exactly7 with the application of
equation (34) for h∞ = −0.4 and �h = 0.2, which is in fact a reasonable quantization.
Looking at the figures 6 and 7 we observe that wavelets G and L2 are able to evaluate higher
order singularities but losing spatial discrimination, as was argued in section 4.2.2. On the
other hand, L1 provides fine spatial determination of the MSC, but at the cost of being unable to

7 The only points not included are those close to h = −1, which in fact are boundary points: the limits of the image
induce step-like transitions which are associated with a h = −1 exponent [19, 51].
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HrΨ
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h

Figure 8. Top: Gray-level representation of the evaluated singularity exponents for MeteoSat
image, using the optimized L1 wavelet (left) and associated MSC (h < −0.2) (right). Bottom:
Empirical histogram of singularities.

differentiate singularities above h = 0. In fact, constructing an appropriate wavelet optimizing
both the resolved singularity range and the spatial resolution is highly non-trivial. After years
of study, we have developed a reasonably efficient wavelet. It is an optimized version of L1,
designed to produce as good reconstruction as possible (see the next section), and is defined
by its numerical weights on a discrete array. In figure 8, we show the results of its application
to the MeteoSat image. Anyway, wavelet design is an open question which would deserve
dedicated studies.

5. Reconstructing the signal

In this section, we go one step beyond and show a remarkable feature intimately related to the
microcanonical character of the analysis performed so far: the signal can be reconstructed.
The implications of this fact are enormous as we will describe throughout the paper.

5.1. The multiplicative cascade in the microcanonical formulation

According to the theoretical arguments that were discussed in section 4.2.1, the singularity
exponents of a physical multiaffine signal must be bounded from below: γ (x) > 0 or,
equivalently, h(x) > −1 (due to the relation h = γ − 1 that was discussed in section 4.2.2).
In the case of more general physical signals, if we suppose that the associated multifractal
measure is bounded on compacts subsets, which is quite reasonable, then the associated
singularities are also bounded. The experiments on real data confirm this theoretical bound:

19



J. Phys. A: Math. Theor. 41 (2008) 015501 A Turiel et al

for the diverse ranges of scales tried, the exponents h for the multifractal measures derived
from different signals (in particular for the two examples we have presented here) are bounded
by −1 (look at the empirical singularity distributions in figures 6 and 7). Then, there exists
a lower bound h∞ and its associated component, the MSC F∞. The presence of the MSC
can be recognized in the shape of the canonical exponents τp, as the largest order moments
are dominated by the MSC, τp = h∞p + o(p) for p � 1. According to Parisi and Frisch’s
formula, equation (18), we can relate each value of p to a value of h, in the way h(p) = dτp

dp

and analogously for each value of h a value of p, p(h) = dD(h)

dh
. So, the correspondence

between values of the singularity exponents h and orders of moment p is one to one. This
makes tempting to establish a link between the cascade process discussed in section 3.2, which
distributes energy from larger to smaller scales, and the hierarchy of singularity components
Fh. The goal would be to describe the cascade as an injection process among the different
singularity components. As a prerequisite, we need to re-interpret the cascade: it represents
an energy transfer between scales, and it should be written in terms of energy transfer between
different order p-moments at fixed scale. She and Leveque [65] derived a relation of this kind
for the case of log-Poisson multifractals. In the following, we will present a more general
version of their derivation. For the sake of simplicity, we will assume that in equation (10) the
derivative with respect to p of αp is negligible in comparison with the derivative of rτp ; this
is a reasonable approximation when r � 1. Hence, for a fixed quantum �p let us define the
p-dissipation term, ε

(p,�p)
r as

ε(p,�p)
r =

[ 〈|Trs|p+�p〉
〈|Trs|p〉

] 1
�p

. (36)

The p-dissipation term can be interpreted as the part of Tr s which can be retrieved from the
range of moments going from p to p + �p. From the physical point of view, we can say
that this variable is the sum of the contributions to Tr s by the singularity components with
singularity exponents in the range ]h(p + �p), h(p)[. We can see that this variable take only
contributions from this subset of components: according to equation (10) we obtain

ε(p,�p)
r = r

τp+�p−τp

�p + o
(
r

τp+�p−τp

�p

) = rh̄�p(p) + o(rh̄�p(p)) (37)

where we have introduced the average singularity exponent of order p, h̄�p(p),

h̄�p(p) = τp+�p − τp

�p
= 1

�p

∫ p+�p

p

dq
dτp

dp
(q) = 1

�p

∫ p+�p

p

dq h(q). (38)

Let us now suppose that the system is a log-Poisson multifractal. log-Poisson multifractals
have been used quite often to model experimental canonical exponents obtained in FDT
experiences [47, 66–68]. Something interesting about log-Poisson multifractals is that the
canonical exponents τp can be parameterized using the two variables defining the MSC:
the singularity h∞ and the dimension of the associated component, D∞ = dim(F∞). The
exponents τp are given by the following expression:

τp = h∞p + (d − D∞)(1 − βp) (39)

where the parameter β represents the effective injection rate among scales, 0 < β < 1, and
can be related to the other two free parameters due to translational invariance [51, 66],

β = 1 +
h∞

d − D∞
(40)
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from where it follows h∞ < 0 and −h∞ < d − D∞ as extra constraints on the parameters.
Applying equation (39) to the definition of the p-dissipation term, equation (37), we obtain

h̄�p(p) = h∞ + (d − D∞)βp 1 − β�p

�p
= h∞

(
1 − βp

1 − β

1 − β�p

�p

)
. (41)

where we have used equation (40). It follows trivially from equation (41) that limp→∞
h̄�p(p) = h∞, and in fact the different values of h̄�p(p) represent the averages over bunches of
singularity components, ordered from the MSC (p = ∞) to the least singular one (p = −∞).
If we now apply equation (41) to evaluate h̄�p(p + �p) we obtain

h̄�p(p + �p) = h∞

(
1 − β�p

1 − β

1 − β�p

�p

)
+ β�ph̄�p(p). (42)

In the original derivation from She and Leveque’s work, �p = 1 and the relation above
simplifies to h̄1(p + 1) = h∞(1 − β) + βh̄1(p). Therefore

ε(p+1,1)
r = (

ε(∞,1)
r

)1−β(
ε(p,1)
r

)β
(43)

and in general, for any q > 0

ε(p+q,1)
r = (

ε(∞,1)
r

)(1−β)(β0+···+βq−1)(
ε(p,1)
r

)β
q

(44)

and in particular, when p = 0 we obtain that

ε(q,1)
r = (

ε(∞,1)
r

)(1−β)(β0+···+βq−1)(
ε(0,1)
r

)β
q

. (45)

Taking into account that (1 − β)
∑q−1

i=0 βi = 1 − βq and that ε(0,1)
r = 1 in the log-Poisson

model, it follows

ε(q,1)
r = (

ε(∞,1)
r

)1−βq

. (46)

This can be interpreted as an energy transfer from the MSC, represented by ε∞,1
r , to any

moment q by successive steps of energy transfer. The continuous limit of this expression
is obtained by letting �p → 0. Recalling that lim�p→0 h̄�p(p) = h(p), taking limits of
vanishing �p in both sides of equation (41) we get

h(p) = h∞

(
1 + log β

βp

1 − β

)
(47)

and now, defining ε
(p)
r = lim�p→0 ε

(p,�p)
r we conclude

ε(p)
r = (

ε(∞)
r

)1+log β
βp

1−β . (48)

In fact, equation (48) is the particular expression for log-Poisson multifractals of a more
general relation, namely

ε(p)
r = (

ε(∞)
r

)h(p)/h(∞)
. (49)

She and Leveque’s intuition was in fact that the cascade could be interpreted in a microcanonical
way: if it is possible to construct variables e

(p)
r (x) such that

〈
e
(p)
r

〉 = Ae
pε

(p)
r and for which

equation (49) is valid, and not only for the first-order moments, namely

e(p)
r (x)

.= αe
p(x)

(
e(∞)
r (x)

)h(p)/h(∞)
(50)

where now the equality holds in distribution only. In the microcanonical formalism
equation (50) trivially holds: the variables e

(p)
r (x) are the restriction of Tr s(x) to the

singularity component Fh(p). Then, according to equation (32), Tr s(x)|Fh(p)
= α�(x) rh(p) and

equation (50) follows. According to the discussions in this section, we consider equation (50)
as the expression of the energy cascade in the microcanonical framework.
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5.2. Reconstructing a signal from its most singular component

Although appealing, equation (50) does not imply that the energy, starting from the MSC,
is transmitted point by point from one component to the others; rather, it simply implies
that the distributions of the variables behave as that. What is interesting in equation (50) is
that the relation between any component and the MSC is deterministic, and it is completely
defined by the ratio h(p)/h(∞). For that reason, Turiel and del Pozo [69] proposed a
deterministic algorithm to reconstruct the signal from the MSC, according to some general
requirements, compatible with the observed statistical symmetries. In the following, we detail
the reconstruction algorithm and then we will discuss it in the perspective of the cascade and
regarding its experimental performance.

We will work with the standard multifractal measure µ = µ‖∇s‖. The goal is to obtain a
functional G such that it could regenerate the values of the measure from its restriction to the
MSC F∞. Expressed in terms of the measure density, which is ‖∇s‖, we intend to reproduce
‖∇s‖ from ‖∇s‖|F∞ . The five conditions imposed on the mapping G in [69] are the following:

• it is deterministic,
• linear,
• translationally invariant,
• isotropic,
• and it leads to the known power spectrum.

Under this set of assumptions there exists only one possible kernel G, as we will next
show. The requirements can be applied one by one, to define the kernel.

5.2.1. Determinism. This property is justified by the characteristics of the microcanonical
cascade discussed in the previous section. If the reconstruction is deterministic, we can
consider the functional G not as a random variable, but as an actual function G : L1

C
(Rd) −→

L1
C
(Rd). The following expression holds

‖∇s‖(x) = G(‖∇s‖|F∞)(x) (51)

that is, the value of ‖∇s‖ at any point is a function G of the values of ‖∇s‖ over the MSC.
Stated differently, G permits the reconstruction of a signal on its whole domain space giving
only information of that signal on the subset F∞.

5.2.2. Linearity. This requirement cannot be justified a priori by any known property of
the ensemble of multifractals, and is introduced only for mathematical convenience. Under
the linearity assumption, it does not make sense to work with the modulus of the gradient,
as the modulus of the gradient is not a linear operator. Instead, we generalize equation (51),
changing ‖∇s‖ by ∇s, as the gradient operator is linear. Anyway, the gradient itself contains
more information than its modulus, so if the reconstruction is possible from the modulus, it
should also be possible from the gradient. We assume in addition that G is a continuous linear
operator, so we look for an integral representation of G, in the way

∇s(x) = G(∇s|F∞)(x) =
∫
F∞

dl(y) G(x, y)∇s(y) (52)

where
∫
F∞

dl(y) means integration over the MSC. It is a hard task to precise under which
conditions the MSC is a Borelian subset of Euclidean space since it completely depends on
the geometry and particularities of the system under analysis. For the moment, we assume the
MSC to be measurable and

∫
F∞

dl(y) is the integral representation of the canonically associated
Lebesgue measure, probably by means of the Hausdorff measure [5] (assuming that the MSC
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is a regular fractal). Looking at equation (52) we observe that we now represent the linear
operator G by means of its d × d matrix density, denoted by G(x, y). We will represent
the matrix element as Gij (x, y) where i, j = 1, . . . , d. If we denote by ∂j s, j = 1, . . . , d

the components of ∇s, the vector ω(x, y) ≡ G(x, y)∇s(y) can be represented also by its
coordinates ω = (ω1, . . . , ωd) where

ωi(x, y) =
d∑

j=1

Gij (x, y) ∂j s(y). (53)

The vector ω(x, y) represents the vectorial density of the gradient, because when integrated
over the MSC it turns out the value ∇s(x).

5.2.3. Translational invariance. This is a usual requirement for the laws of Physics, and
necessary if the kernel is universal. It implies that there is no preferred place at which
objects, events, structures, etc should be expected to be found. In other words, there is no
translational bias in the spatial distribution of values. When dealing with experimental signals,
which are recorded over bounded domains, the extent of this statistical symmetry is indeed
limited although, in general, it is well verified by data. In terms of the integral representation,
equation (52), translational invariance implies that the operator density G(x, y) does not
depend on each variable x and y separately, but on its difference x − y. It follows that

∇s(x) =
∫
F∞

dl(y) G(x − y)∇s(y). (54)

Equation (54) can be simplified to an equivalent scalar form: the left-hand side is a gradient
(perhaps in a distributional sense, as signals may present sudden changes as steps). Regarding
the gradient as a differential 1-form, it is exact by definition so it must be closed, hence its
exterior differential vanishes: d∇s = 0. This property is translated to the reconstructor G, in
the way

∂αGβj (x) − ∂βGαj (x) = 0 ∀α, β, j = 1, . . . , d (55)

that is, the 1-forms λj = (G1j , . . . ,Gdj ) are all closed for j = 1, . . . , d. As the kernel G is
intended to be universal, it is defined in R

d , which is simply connected. It follows that any
closed form in R

d is exact, from where we conclude that there exists a d-dimensional vector
g = (g1, . . . , gd) such that

Gij (x) = ∂igj (x) (56)

that is, the matrix G is the gradient of a vector g. We can now simplify equation (54) to obtain

s(x) =
∫
F∞

dl(y) g(x − y) · ∇s(y). (57)

The equation above can be rewritten in a very useful form by introducing a distributional field
which contains all the information which is specific to the signal to be reconstructed. This
information is of two types: functional—the values of the gradient ∇s—and geometrical—the
MSC. We define the essential gradient of the signal, ∇∞s(x), as the following distribution

∇∞s(x) = ∇s(x)δF∞(x) (58)

where δF∞(x) stands for the density of the proper Hausdorff measure restricted to the set F∞
(roughly speaking, a delta function over the connected components defining F∞). In this way,
equation (57) becomes a standard convolution, as now the integration is performed over all
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the space and it is no longer restricted to the MSC. We obtain a practical expression for the
reconstruction formula, in the way

s(x) =
∫

dy g(x − y) · ∇∞s(y) = g ∗ ∇∞s(x) (59)

where * stands for the convolution dot-product, see section 2. The reconstruction formula is
elegantly expressed in Fourier space as

ŝ(f) = ĝ(f) · ∇̂∞s(f) (60)

which is an integral equation equivalent to equation (59) and where ‘·’ means the scalar product
of the complex vectors. To fully define the reconstruction algorithm, we need to complete the
definition of the operator G, now represented by the complex vector field ĝ(f), with the two
requirements that we have not yet used.

5.2.4. Isotropy. The functional G is assumed to be universal, that is, not depending on the
specific properties of the signal to be reconstructed: the information on the signal is assumed
to be completely represented by the essential gradient ∇∞s. We conclude that the kernel
density vector g is isotropic, that is, it does not possess preferred directions. We can hence
decompose it in the following way

ĝ(f) = |ĝ|(‖f‖)
√−1f
‖f‖ = |ĝ|(‖f‖) if

‖f‖ (61)

where |ĝ|(‖f‖) stands for the modulus of the kernel in the Fourier space. The complex
imaginary unit i must be introduced to ensure that the vector �g is real. Because of the isotropy,
|ĝ|(‖f‖) can only be a function of the modulus ‖f‖ of the frequency vector.

5.2.5. Power spectrum. Taking into account that we are dealing with scale invariant systems,
it is natural to think that |ĝ|(‖f‖) is a power law in ‖f‖. In fact, to define completely the kernel,
we will assume that the power spectrum S(‖f‖) associated with the ensemble of signals s
scales as

S(‖f‖) ∼ 1

‖f‖2−η
, (62)

where the deviation exponent η depends on the particularities of the ensemble considered.
As we next see, the simplest possible ĝ compatible with this power spectrum is given by
|ĝ|(‖f‖) = 1/‖f‖. Now the definition of the kernel is complete and can be expressed in
Fourier space as

ĝ(f) = if
‖f‖2

. (63)

Note that, in application of the reconstruction formula, equation (60), the modulus of
the Fourier transform of the signal is given by |ŝ(f)| = g(‖f‖)A(f), where the factor
A(f) = |∇̂∞s(f) · ‖f‖|/‖f‖ has a weak dependence on ‖f‖ and varies from one signal
to another and depends on the particularities of the MSC across the ensemble of signals
considered. According to the definition we obtain that the power spectrum is

S(f) = |ĝ|2(‖f‖) 〈A2(f)〉 (64)

where the average 〈·〉 means averaging over the ensemble of signals. Comparing equation (64)
with equation (62) we make the assignment of the term |g|2(‖f‖) to the factor ‖f‖−2, while
the factor A2(f) introduces the particular anisotropy of the ensemble and would give rise to
the weak dependence ‖f‖η in equation (62).
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MSC srecons(x)

MSC srecons(x)

MSC srecons(x)

Figure 9. MeteoSat image. Results are ordered from top to bottom for changing MSC thresholds:
hθ = −0.2, hθ = 0.0 and hθ = 0.1. Left: MSCs; experimental densities: 6.01%, 28.69% and
42.40%. Right: Reconstructions from the MSCs; PSNRs = 20.06 dB, 30.01 dB and 34.91 dB.

We have finally arrived to equation (63), which defines the propagator (indeed
equation (59) indicates how to propagate the essential gradient away the MSC to restitute
the original signal over its whole domain of definition). Substituting this particular expression
in equation (60), we obtain the final expression for the reconstruction formula

ŝ(f) = if · ∇̂∞s(f)
‖f‖2

. (65)

The reconstruction formula has a very interesting property: no matter the signal
considered, equation (65) allows reconstructing the correct s(x) provided that the set F∞
(which defines ∇∞s) is large enough: if F∞ is taken as the whole signal, ∇∞s ≡ ∇s and
equation (65) turns out to be a trivial identity. The question is if multifractal signals allow
reconstruction considering a rather sparse set F∞: the MSC. Experimental results in different
types of signal [21, 25, 52, 69, 70] show that the reconstruction formula provides good
performance on experimental MSCs, although results can be improved by optimizing the
choice of the wavelet [70]. Our proof about the reconstruction algorithm does not prove that
such reconstruction exists, but only that if it exists and verifies the required properties, it
should take the form expressed in equation (65). So that, while still keeping equation (65),
it may happen that the ‘minimal’ set to allow reconstruction is not the MSC but a different
object, ‘close’ but different to the MSC and hence contributions from other sets should be
included. However, a systematic study on the contribution of each singularity component (and
also, on the influence of choosing one wavelet or another) was carried out in [70], and the
results therein show that the less singular components carry very few or almost no information
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Figure 10. TelefónicaTM series. Results are ordered from top to bottom for changing MSC
thresholds: hθ = −0.2, hθ = 0.0, and hθ = 0.1. Left: Summary of results. Right:
Reconstructions from the MSCs.

about the scene, mostly randomly distributed and unrelated sets of observable structures. It
was concluded that the informative points they may contain are randomly wrongly classified.

5.3. Experimental performance

In the following, we will study the appropriateness and accuracy of the reconstruction formula
to describe our chosen example signals. In addition, we will study how the quality of MSC
influences the quality of the reconstruction. To measure the quality of a particular reconstructed
signal, srecons, we will calculate its dispersion compared to the range of values of the original
signal s. We define the error signal as ε(x) ≡ s(x)− srecons(x), and the usual L2 standard error,
σrecons, as

σrecons =
(

1

λd(�)

∫
�

dx (s(x) − srecons(x))2

) 1
2

(66)
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erecons erecons

hθ h θ

Figure 11. Standard error of the reconstructions from the MSC as a function of the threshold
singularity exponent hθ . Left: MeteoSat image; Right: Telefónica series.

λd being the Lebesgue measure on R
d . We will express the error in terms of the relative

standard error, erecons, that we define as

erecons ≡ σrecons

�s

(67)

where �s is the so-called dynamical range of the signal s, that is, the difference between the
maximum and the minimum observed values for s over the compact domain �. This quantity
is directly related to the peak signal-to-noise ratio (PSNR), which is commonly used in signal
engineering: PSNR = −20 log10 erecons (for PSNR expressed in decibels, dB). The relative
standard error gives us an dimensionless (i.e., without measurement units) measure of the
error incurred by a reconstruction. We give here some figures as hints on the significance of
the quantity. It is commonly considered that the reconstruction is poor when erecons is greater
than 0.10 (PSNR below 20 dB) which corresponds to a situation in which the standard error
is above the 10% of the total dynamical range. Reconstructions are considered as remarkable
when the relative standard error lies between 0.10 and 0.01 (PSNR from 20 to 40 dB), that is,
it represents an amount among 10 and 1% of the dynamical range. Errors below the 1% of
the dynamical range (PSNR above 40 dB) can be considered for many applications as perfect
reconstructions.

In figures 9 and 10, we present the results of reconstructing the signal with the MSCs
(defined as in equation (35)) obtained with different values of singularity threshold hθ . In
all the cases, we evaluate the singularities with the optimized numerical Lorentzian wavelet
presented in section 5.3. In figure 9, we show each determination of the MSC and the
corresponding reconstruction for the MeteoSat image. In figure 10, we do not represent the
different determinations of the MSC because they are difficult to visualize on a 1D plot.

The experimental results presented in the tables show that intermediate values of
the singularity threshold hθ lead to rather sparse determinations of the MSC with good
reconstruction quality. We have performed a more detailed study on the quality, computing
the evolution of the relative standard error with hθ . The results are shown in figure 11. In
the graphs, it is possible to appreciate that the error diminution is not constant and that it
evolves very fast in the region of negative thresholds. An interpretation of this fact could be
the following: even if some points fail to be detected as most singular (and thus belonging
to the MSC), their estimates have values not far from those of the MSC and hence, as hθ
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increases, they are quickly included in the hθ -determination of the MSC. In fact let us observe
that the MSCs detected for the MeteoSat image are consistently curve-like, that is, they appear
as fractals of dimension 1. This is a commonly reported observation in natural images [51,
64], meteorological images [21, 22] and oceanographic images [52]. This one-dimensionality
of the MSC is connected to the interpretation of the MSC as a front-like structure. As the
value of hθ increases while still keeping a moderated value, the MSC features a curve-like
aspect, which gets coarser and coarser as the value becomes positive. Our results show that
values of hθ around 0 lead to MSCs of moderated density and of good reconstruction quality.

6. Conclusions

In this paper, we have made a review on the theoretical foundations of the microcanonical
formulation. The paper revisits some of the key points in this formalism, detailing
theoretical and practical aspects in this methodology and extending previous works by
providing a coherent, unitary presentation, extended theoretical treatment and numerical
implementations.

Microcanonical formalism is based in the assessment of a local structure of singularities,
hierarchized in such a way that it gives rise to a multifractal structure. The existence of an
actual classification of points, according to the different singularity components composing
the system, allows us to extract fine information on the dynamics of the system. In
particular, one of the most advantageous features of this formalism is the introduction of
reconstructible multifractals, as a natural extension to the microcanonical context of the concept
of multiplicative cascade. Reconstructible multifractals are multifractals in the microcanonical
sense. Besides, they possess a definite vertex in the multifractal hierarchy, associated with a
finite minimum singularity value. The associated singularity component is known as the most
singular component (MSC). For reconstructible multifractals, it comprises enough information
to fully reconstruct the whole signal just from the gradient restricted to that set. Such a
representation of signals has strong implications in terms of dynamical description as well as
for coding and compression tasks.

The range of applications of this formalism is wide and far reaching. Future research
should be conducted, first, to complete some lacking proofs. Let us recall some of them:
the actual existence of a geometrical cascade realizing the multiplicative canonical one, and
its consequences for reconstruction. From a technical point of view, research must focus on
better implementations of the wavelet singularity analysis. The construction of efficient codes
should also be explored. From a theoretical point of view, research should address the need
of establishing links in the evolution of multifractals and the known evolution equations (as
Navier–Stokes in the case of flows) in order to assess the physical meaning of geometrical
entities like the MSC, etc. Lastly, it would be convenient to deduce evolution equations for
the canonical representatives of multifractal signals.
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Appendix. Scaling requirements for analyzing wavelets over multifractal measures

A.1. General conditions on wavelet tails

In this subsection, we present a qualitative analysis on the influence of the wavelet tail on the
value of the exponents. In the next subsection, we will derive a quantitative analysis of that
behavior using different assumptions.

We start from the integral form of Lebesgue’s density theorem in R
d [71, vol. 2, 261C]:

µ‖∇‖-almost everywhere in x, one has

�(x) = lim
r→0

1

µ‖∇‖(Br(x))

∫
Br (x)

�(y) dµ‖∇‖(y). (A.1)

In the following derivation, we will assume, without loss of generality that x = 0, as the
equations are clearer. The wavelet projection of measure µ‖∇‖ at x = 0 and at scale r is given
by

T�‖∇s‖(0, r) = 1

rd

∫
Rd

�
(y

r

)
dµ‖∇‖(y) = 1

rd

∫
Rd

�r(y) dµ‖∇‖(y) (A.2)

with

�r(y) = �
(y

r

)
. (A.3)

Let us denote the sup-norm of y ∈ Rd by ‖y‖∞ : ‖y‖∞ = sup|yi | with y = (y1, . . . , yd), and
let us decompose the integral in (A.2) in two terms:

T�(0, r) = 1

rd

∫
‖y‖∞�y0

�r(y) dµ‖∇‖(y) +
1

rd

∫
‖y‖∞>y0

�r(y) dµ‖∇‖(y) (A.4)

with y0 chosen large enough. The first integral in (A.4) is again split into two terms
1

rd

∫
‖y‖∞�y0

�r(y)dµ‖∇‖(y) = 1

rd

∫
0�‖y‖∞�α

�r(y) dµ‖∇‖(y) +
1

rd

∫
α�‖y‖∞�y0

�r(y) dµ‖∇‖(y)

(A.5)

where α will be chosen small enough: α = ry0, with r sufficiently small. In the neighborhood
of 0, and supposing that � is C1 around the origin (a reasonable hypothesis for the vast
majority of wavelets) we can use the Taylor expansion at first order (y = (y1, . . . , yd))

�r(y) = �(0) +
d∑

i=1

yi

r

∂�

∂yi

(0) + ‖y‖ε(y) (A.6)

which by substitution into the first integral of equation (A.5) gives

1

rd

∫
0�‖y‖∞�ry0

(
�(0) +

d∑
i=1

yi

r

∂�

∂yi

(0) + ‖y‖ε(y)

)
dµ‖∇‖(y). (A.7)

Then, according to the Lebesgue density theorem (A.1), when r → 0, the integral in (A.7)
becomes equivalent to c�(0) 1

rd rh(0)+d = c�(0)rh(0) for a suitable constant c. So the first
integral in (A.5) lets the singularity exponent at 0 unchanged when r → 0, as long as
�(0) �= 0. However, the second integral in (A.5) reveals the ‘tail’ behavior of the wavelet and
it may modify the singularity exponent at 0. To see this, let us perform the change of variables

u1 = �
(y

r

)
u2 = y2

...

ud = yd

(A.8)
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in the integral

1

rd

∫
ry0�‖y‖∞�y0

�r(y) dµ‖∇‖(y) (A.9)

to get an integral of the form

1

rd−1

∫
ε1(r) � |u1 | � γ

u2 , . . . , ud

u1‖∇s‖(r�−1(u1), u2, . . . , ud)

∣∣∣∣∂�−1

∂u1

∣∣∣∣ (u) du. (A.10)

As � is integrable, the integration domain for variable u1 between ε1(r), which tends to 0
when r → 0, and a fixed γ reflects the decreasing toward 0 of �. If the wavelet � decreases
at infinity according to a power law: �(x) ∼ ‖x‖−n0 when ‖x‖ → ∞, power of n0 pops up in
the integral (A.10) which may change the behavior of µ‖∇‖’s singularity exponent at 0, when
r (and, accordingly, ε1(r)) tends toward 0.

A.2. Dependence of the retrieved exponents in the asymptotic behavior of the wavelet

In the last subsection, we showed that the tail behavior of the wavelet do influence the values
of the singularity exponents. In this subsection, we will derive quantitative information on
how the exponents values are perturbed by wavelet’s tail. For this purpose, we use a more
tractable and different assumption. First, we suppose that we have relations of the form

A(x0) rd+h(x0) � µ(Br(x0)) � B(x0) rd+h(x0) (A.11)

for appropriate positive constants A(x0), B(x0). The wavelet � will be assumed to be positive
to simplify the discussion. In our proof, we will also restrict the discussion to the case of a
continuous function � and �(0) �= 0. As will be shown, � will be required to decrease fast
enough.

We will assume that for any point x and any size r the wavelet projection T�µ(x, r) is
finite. If it was not the case, as µ is σ -finite it would be possible to define a sequence of finite
measures µn defined over compact supports An such that µ|An

= µn; but � is continuous so
the wavelet projections of the µn are finite. The proof for µ would be obtained as a limit case,
once the theorem is shown to be valid for the µn’s,

Finally, we will just study the singularity at x = 0, the extension for the other points being
trivial. We will denote the singularity at x = 0 by h0, in the sense of equation (A.11). The
wavelet projections we are interested in are T�µ(0, r), given by

T�µ(0, r) =
∫

dµ(x)
1

rd
�

(x
r

)
. (A.12)

The statement of the theorem is as follows:

Theorem A.1. For any wavelet � belonging to an appropriate class described in the proof,
the projection T�µ(0, r) satisfies a relation of type (A.11) with exponent h(0)

A(0) rh(0) � T�µ(0, r) � B(0) rh(0). (A.13)

We will present the proof in three stages, for three different classes of functions: set
functions, compact support functions and fast decreasing functions. For the last two types of
functions, we will always assume that � is a positive, continuous function and �(0) �= 0 to
make the proof simpler.
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A.2.1. Set functions. Let �(x) be the set function of the ball of radius v centered around the
origin, that is, �(x) = 1Bv(0)(x). According to equation (A.12), the wavelet projections of �

at x = 0 are given by

T�µ(0, r) =
∫

dµ(x)
1

rd
1Bv(0)

(x
r

)
= 1

rd

∫
dµ(x) 1Brv(0)x). (A.14)

Hence, it follows

T�µ(0, r) = 1

rd

∫
Brv(0)

dµ(x) = µ(Brv(0))

rd
(A.15)

so for these simple functions the theorem is trivially verified.

A.2.2. Compact support functions. We will just try to find two constants 0 < A < B such
that

A rh0 � T�µ(0, r) � B rh0 . (A.16)

A lower bound constant A is easily obtained by the condition of continuity and �(0) �= 0,
as follows: there exists a finite radius v such that �(x) �= 0 ∀ x ∈ Bv(0). Let m > 0 be the
minimum value of �(x) in Bv(0); then, for all x the following inequality holds

m 1Bv(0)(x) � �(x). (A.17)

Let 0 < A0 < B0 be the bounding constants for µ at x = 0, that is, such that A0r
d+h0 <

µ(Br(0)) < B0r
d+h0 . Then,

m A0 vh0+d rh0 � m T1Bv(0)
µ(0, r) � T�µ(0, r). (A.18)

So, A can be taken as A = mA0vh0+d .
To obtain B we will use that � has bounded support; so, there exists a finite radius w such

that �(x) = 0 ∀ x : ‖x‖ > w. As � is continuous, it possesses a finite maximum M in Bw(0).
Hence, the following functional inequality holds

M 1Bw(0)(x) � �(x). (A.19)

and analogously to the case of the lower bound, we conclude that a possible upper bound is
given by B = MB0wh0+d .

A.2.3. Fast decreasing functions. We will search constants 0 < A < B as in the previous
case. The constant A can be calculated exactly like for compact support functions, so we just
need to find B.

Let the radius v be defined as in the previous case and let us define the sets Ri as follows:
Ri = B2iv(0) − B2i−1v(0) for i � 1 and R0 = Bv(0). Let Mi be the maximum of � over Ri .
Hence, the following functional inequality holds


(x) =
∞∑
i=0

Mi 1Ri
(x) � �(x) (A.20)

where 1Ri
is the set function of Ri , which equals 1 over Ri and 0 outside. We can conclude

by proving that there exists an upper bound B for 
 such that T
µ(0, r) � Brh0 , which by
equation (A.20) is also an upper bound for �. To obtain this bound, let us suppose that there
exists a finite radius w > 0 such that if ‖x‖ > w, for all K > 1 the function � verifies

�(Kx) < �(K)�(x) (A.21)

31



J. Phys. A: Math. Theor. 41 (2008) 015501 A Turiel et al

where �(K) decreases to zero as K goes to infinity faster than any polynomial, that is,

lim
K→∞

Kn�(K) = 0 ∀ n > 0. (A.22)

This requirement on � above is a small modification on the condition defining Schwartz’s
class. We introduce the radius w to avoid forcing the function to be strictly decreasing from
the origin, which would define a very restrictive class of functions. Let i0 be the least integer
greater than log2(w/v). Following equation (A.21), for all i ′ > i > i0

Mi ′ < �(2i ′−i ) Mi. (A.23)

We will first take r as r = 2−j , for j > 0 integer. We can thus decompose the dilation of 


by a factor r,
(x/r), as


(x/r) =
i0+j∑
i=0

Mi 1Ri
(x/r) +

∞∑
i=i0+j+1

Mi 1Ri
(x/r) = 
j(x) + δj (x). (A.24)

For i > i0 + j, 1Ri
(x/r) = 1Ri

(2j x) = 1Ri−j
(x). The residual function δj (x) verifies the

following bound (obtained applying equation (A.23)):

δj (x) < �(1/r)

∞∑
i=i0

Mi 1Ri
(x) = �(1/r) δ0(x). (A.25)

Given the dependence of δj (x) in r, it decays very fast, and this function is negligible in
comparison with any power of r, so we can ignore this part. Hence, T
µ(0, r) ≈ T
j

µ(0, r)

for r = 2−j . For a general value of r, we also obtain T
µ(0, r) ≈ T
j
µ(0, r) where j is such

that 2−j−1 < r � 2−j . Taking into account that

T1Ri
µ(0, r) � vh0+d 2(h0+d)i (B0 − 2−(h0+d) A0) rh0 (A.26)

it follows

T
j
µ(0, r) � vh0+d (B0 − 2−(h0+d) A0)

(
i0+j∑
i=0

2(h0+d)i Mi

)
rh0 (A.27)

so the upper bound B is given by

B = vh0+d (B0 − 2−(h0+d) A0)

∞∑
i=0

2(h0+d)i Mi (A.28)

where the series
∑∞

i=0 2(h0+d)i Mi is finite due to the fast decreasing of Mi .

A.2.4. Refined choices for the wavelet. The previous section gives a proof of the capability
as singularity analyzers for wavelets � chosen in a very restrictive class of functions. Some
of the conditions can be relaxed from a mathematical point of view (for instance, the
requirement of continuity could be relaxed to integrability and boundness), although their
precise formulation does not change very much the result in practical applications. It is also
clear that singularities can be detected just using positive wavelets, but non-positive wavelets
could be used as well. So none of those conditions is going to change significantly the
main result nor the experimental performance (except for the questions already discussed
concerning the minimum distinguishable resolution). However, there is a requirement which
is critical to extract singularities and whose correct tuning allows us to improve significantly
the performance; namely, the condition of fast decay expressed in equation (A.22).

Any a priori knowledge about the properties of the multifractal measure µ allows enlarging
the class of valid wavelets by relaxing the fast decay condition. The most relevant information
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is the knowledge of bounds on the range of possible singularity exponents h0. Let us assume
that there exists a maximum singularity exponent hm. In this case, the fast decay condition
can be modified so that equation (A.22) is only required for n � n0 ≡ d + hm. The argument
goes as follows: let us assume that for ‖x‖ large enough, |�(x)| ∼ ‖x‖−n0 (in the sense
that lim‖x‖→∞ ‖x‖n0‖�(x)‖ is not divergent). So, �(‖x‖) ∝ ‖x‖−n0 and Mi is then given by
Mi ∝ 2−n0i . The existence of the upper bound B given in equation (A.28) is limited to the
cases in which the series appearing in the definition is finite but for the wavelet we consider
now this series is proportional to

∞∑
i=0

2(h0+d−n0)i (A.29)

which converges if n0 > h0 + d and diverges for n0 � h0 + d. So, it suffices to take n0 >

hm + d to assure the convergence; otherwise, the definition of B above does not hold;
in fact, in that case T
j

µ(0, r) is trivially dominated by a factor rn0−d directly coming
from the asymptotic behavior of �. This allows us to refine the proof above as follows:
let �(x) a wavelet decaying as ‖x‖−n0 at the infinity. Then, at any point x in which
µ(Br(x)) ∼ α(x) rh(x)+d , the wavelet projection is given by T�µ(x, r) ∼ rh�(x), where

h�(x) =
{

h(x), h(x) < n0 − d

n0 − d, h(x) � n0 − d.
(A.30)
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